Diminished functional gradient of the precuneus during altered states of consciousness

bioRxiv – December 17, 2024

Source: medRxiv/bioRxiv/arXiv

Summary

Research reveals that the brain's default mode network (DMN) and frontoparietal control network (FPCN), crucial for our mental functions, interact in surprising ways. By examining the precuneus region, scientists found that these networks share a continuous functional gradient. This gradient shifts during altered states of consciousness, indicating a complex relationship that blends their roles in our cognitive experience.

Abstract

The relationship between the default mode network (DMN) and task-positive networks, such as the frontoparietal control network (FPCN), is a prominent feature of functional connectivity (FC) in the human brain. This relationship is primarily anticorrelated at rest in healthy brains and is disrupted in altered states of consciousness. Although the DMN and FPCN seem to perform distinct and even opposing roles, they are anatomically adjacent and exhibit ambiguous boundaries. To test the hypothesis that the DMN-FPCN distinction manifests probabilistically rather than having absolute anatomical boundaries, we examined the differences in FC along the dorsal-ventral (d-v) axis in the posterior precuneus (PCu), which serves a convergence zone between the DMN and FPCN. Our findings indicate that the connectivity differences along this axis are continuous as characterized by linear slopes. Notably, these linear relationships (i.e., functional gradients of the precuneus/FGp) are present only within the territories of the DMN and FPCN, respectively associating with positive and negative slopes. Furthermore, the gradient is functionally relevant, as its spatial configurations change in specific ways in altered states of consciousness (ASC): the magnitude of FGp is similarly impaired across different types of ASC, while the spatial entropy of FGp differs between psychedelic and sedative states. These results suggest that the DMN and FPCN, while appearing distinct, may originate from a single, integrated mechanism.